Abstract
Radial basis function (RBF) artificial neural network (ANN) and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (pH, temperature, inoculum volume) for extracellular protease production from a newly isolated Pseudomonas sp. The optimum operating conditions obtained from the quadratic form of the RSM and ANN models were pH 7.6, temperature 38 °C, and inoculum volume of 1.5 with 58.5 U/ml of predicted protease activity within 24 h of incubation. The normalized percentage mean squared error obtained from ANN and RSM models were 0.05 and 0.1%, respectively. The results demonstrated an higher prediction accuracy of ANN compared to RSM. This superiority of ANN over other multi factorial approaches could make this estimation technique a very helpful tool for fermentation monitoring and control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.