Abstract

This paper presents the first comprehensive investigation that aluminum honeycomb has inevitable machining defect in milling process, such as deformation, burr, and collapse. Ice fixation method was used to clamp workpieces, and inner-injection liquid nitrogen was employed for a series of cryogenic milling machining. In the machining process, the main machining parameters including in honeycomb orientation, milling width, cutting depth, cutting speed, and feed were executed experimental research. Meanwhile, the machining parameter optimization, range, and significant analysis were adopted to analyze the influence of machining parameters on the machining surface quality, as well as the optimal parameter combination and milling machining surface quality were predicted and verified. The results show that the ice fixation aluminum honeycomb method with cryogenic milling is much advanced than that of conventional ones, and many machining defects are effectively restrained. At the same time, the influence of machining parameters on machining qualities in descending order is cutting depth, cutting speed, honeycomb orientation, feed, and milling width. The minimum roughness value (Ra = 0.356 μm) of the predicted machining surface is similar to the actual machining result (Ra = 0.362 μm). It verifies the feasibility of the optimization method. Furthermore, it is proved that the ice fixation + liquid nitrogen cooling method has a positive effect on the high milling quality and implement efficiency for aluminum honeycomb and other difficult-to-machine materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call