Abstract

This paper focuses on the problem of crude oil operations scheduling carried out in a system composed of a refinery and a marine terminal, considering uncertainty in the arrival date of the ships that supply the crudes. To tackle this problem, we develop a two-stage stochastic mixed-integer nonlinear programming (MINLP) model based on continuous-time representation. Furthermore, we extend the proposed model to include risk management by considering the Conditional Value-at-Risk (CVaR) measure as the objective function, and we analyze the solutions obtained for different risk levels. Finally, to evaluate the solution obtained, we calculate the Expected Value of Perfect Information (EVPI) and the Value of the Stochastic Solution (VSS) to assess whether two-stage stochastic programming model offers any advantage over simpler deterministic approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.