Abstract

Fiber-Metal-Laminates (FML) show superior dynamic mechanical properties combined with low densities. The mechanical performance of for example commercially available fiber-metal-laminate, glass laminate aluminum reinforced epoxy, can be improved by the substitution of glass fibers with carbon fibers. However, carbon fiber reinforced aluminum laminate introduces a mismatch of coefficients of thermal expansion and the possibility of galvanic corrosion. The fiber-metal-laminate is altered by the integration of an elastomer interlayer which is desired to solve both problems. The high electrical resistance is supposed to inhibit the corrosion. This study focuses on the effect of galvanic corrosion caused by neutral salt spray tests on fiber-metal-laminates, the influence of an elastomer interlayer and the quantification of the residual mechanical properties. The galvanic corrosion affects the interfaces of the laminates, therefore in this study edge shear tests and flexural tests were carried out to quantify the residual properties and thereby the corrosive damage. The elastomer interlayer was found to inhibit galvanic corrosion in the salt spray chamber, whereas the fiber-metal-laminate without interlayer showed corrosive damage. Furthermore, the mechanical properties of the fiber-metal-laminate with elastomer interlayer remained constant after the corrosion tests, whilst the fiber-metal-laminate’s properties decreased with corrosive loads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.