Abstract

In the present work, a computational fluid dynamics analysis has been carried out for analysing heat transfer from a longitudinal fin with step change. For the aforementioned problem, heat is transferred by conduction through the fin along its length and dissipated from the fin surface via natural convection to the ambient and thermal radiation to the surrounding. For a given volume or mass, the total amount of heat dissipated from the fin surface, fin effectiveness and fin efficiency have been determined for two novel fin profiles and the results have been compared with that of conventional rectangular fin (CRF). Numerical calculations have been carried out for five different cases. It has been concluded that novel fin configurations dissipate more heat and produce higher fin efficiency than the CRF profile. The rectangular fin with single-step change has been found to be the most efficient fin profile in terms of maximum heat loss and fin efficiency. The optimum fin dissipated ∼3.4% more heat and provided 2% higher efficiency than the CRF profile. Some recommendations have been made about the potential application areas of proposed fin configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.