Abstract

The purpose of this study was to optimize conditions for high throughput measurement of radical oxygen species (ROS) production and expression of tissue factor, also termed procoagulant activity, by canine leukocytes. Granulocytes and mononuclear cells were separated by density gradient centrifugation from peripheral blood collected on several occasions from three healthy large breed dogs. To determine optimal conditions for ROS production, granulocytes were incubated for 1 or 3 h in PBG (PBS containing 0.5% BSA and 5 mM glucose) or RPMI containing 10% fetal bovine serum (FBS); lipopolysaccharide (LPS), zymosan, peptidoglycan (PGN) and phorbol myristate acetate (PMA) were used as stimuli. ROS was assessed by conversion of the nonfluorescent dye dihydrorhodamine 123 to fluorescent rhodamine 123 by radical species released into the media. To identify optimal conditions for expression of tissue factor, mononuclear cells were incubated for 5 h in RPMI containing different concentrations of heat-inactivated FBS (HI-FBS), and LPS, zymosan, PGN or PMA as stimuli. Expression of tissue factor was determined using a one-stage recalcification assay performed in an automated nephelometric coagulation analyzer. Neither LPS nor zymosan increased ROS production by granulocytes incubated in PBG media. In contrast, granulocytes incubated in RPMI had dose-dependent increases in ROS production in response to zymosan and PGN. ROS production was significantly increased by incubation with concentrations of LPS of 0.01 μg/ml or greater, and by zymosan concentrations of 0.1 μg/ml or greater. ROS production in response to incubation with PMA was signficantly increased starting at 10 −7 M, and was significantly greater for cells incubated in RPMI than cells incubated in PBG. LPS-, zymosan- and PGN-stimulated procoagulant activity increased in a dose-dependent manner, whereas PMA-stimulated procoagulant activity peaked at 10 −7 M. Increasing concentrations of HI-FBS significantly increased LPS-, zymosan- and PGN-induced procoagulant activity of mononuclear cells. Results obtained in this study indicate production of ROS by canine granulocytes is optimal when these cells are incubated for 3 h in RPMI with LPS (0.1 μg/ml), zymosan (10 μg/ml), PGN (10 μg/ml), and PMA (10 −7 M). Furthermore, canine mononuclear cells express procoagulant activity in response to LPS, zymosan, PGN, and PMA, and responses to LPS, zymosan and PGN are enhanced by the addition of HI-FBS. These findings suggest that HI-FBS retains important serum proteins that facilitate interactions between each of these bacterial or yeast derived products and the mononuclear cells. Consequently, future studies regarding the regulation of procoagulant activity by canine mononuclear cells should be performed in the presence of HI-FBS. Both assays utilized in this study allow high throughput of samples, and therefore are appropriate choices for rapid screening of conditions and/or therapeutic interventions affecting the canine inflammatory system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.