Abstract

Computer Aided Diagnosis (CAD) systems are designed to aid the radiologist in interpreting medical images. They are usually based on lesion detection and segmentation algorithms whose performance depends on a large number of parameters. While time consuming and sub-optimal, parameter values are most often selected through manual search strategies. Genetic or evolutionary algorithms (GA) are effective optimization methods that mimic biological evolution. Genetic algorithms have been shown to efficiently manage complex search spaces, and can be applied to all kinds of objective functions, including discontinuous, nondifferentiable, or highly nonlinear ones. In this study, we have adopted an evolutionary approach to the problem of parameter optimization. We show that the genetic algorithm is able to effectively converge to a better solution than manual optimization on a case study for digital breast tomosynthesis CAD. Parameter optimization was framed as a constrained optimization problem, where the function to be maximized was defined as the weighted sum of sensitivity, false positive rate and segmentation accuracy. A modified Dice coefficient was defined to assess the segmentation quality of individual lesions. Finally, all viable solutions evaluated by the GA were studied by means of exploratory data analysis techniques, such as association rules, to gain useful insights on the strength of the influence of each parameter on overall algorithm performance. We showed that this combination was able to identify multiple ranges of viable solutions with good segmentation accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.