Abstract

Nitrile butadiene rubber latex (NBRL) based gasket materials were extensively used in the past due to their excellent oil resistance, good abrasion resistance, and shock absorption as well as good high-temperature stability. Recently, carbon black has been introduced to further improve the oil absorption properties and thermal performance of the gasket materials which increased the total costing and makes the processing difficult due to the agglomeration of carbon black in NBRL. Thus, in this research, waste tire powder (WTP) was introduced to develop high-performance coating materials as an alternative to carbon black in NBRL gasket material. Optimization of new compounding formulation has been carried out by manipulating the WTP loading and hybrid WTP-carbon black filler loading. The filler loading was selected based on the desired surface texture and coating thickness. The experience was also carried out by varying the WTP, Sulphur, and plasticizer loading. The desired surface texture and thickness of coating materials were developed at WTP loading of 80phr and 90phr. Whereas, the optimum Sulphur loading was achieved at 1phr - 2phr, and plasticizer loading of 10phr and 15phr. From the experiments carried out, the optimum loading of WTP was 90phr which gives a fully contained gasket composite. Furthermore, DOP optimum loading is 15phr which gives a smooth surface appearance. Lastly, Sulphur with 1phr gives a more even surface texture as compared to 2phr loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call