Abstract

Concrete is a quasi-brittle building material that has low tensile strength. The process of its destruction under loading is inhomogeneous, due to the nature of the concrete structure mass, consisting of components with different physical and mechanical properties. Gradual deformation and destruction can be characterized as a process of formation and development of microcracks. The presence of different-sized components in concrete makes it possible to consider its structure as a multi-level system. In this system, each level is a matrix with its own structural inclusions, which play both a structure-forming role and the role of stress concentrators under the action of mechanical loads. The critical stress intensity factor is a good indicator of the crack resistance (fracture toughness) of a material. Nanoconcrete, from the point of view of a multilevel system, is a concrete composite with crack propagation inhibitors at the level of the cementing substance (carbon nanotubes are consi-dered as inhibitors). The presence of fiber fibers at subsequent scale levels allows us to consider concrete as a composite with multi-level dispersed reinforcement (nanofiber concrete). The paper discusses the change of concrete fracture toughness indicator (crack resistance) with dispersed reinforcement of the matrix at different structural levels. The presented for normal separation of notched cubes under eccentric compression with the determination of the stress intensity factor for concrete modified with carbon nanotubes acting as crack propagation inhibitors at the level of cementing substance (nanoconcrete), as well as for nanofiber concrete with dispersed reinforcement at the level of fine-grained concrete. Based on experimental studies by non-equilibrium methods of fracture mechanics, compositions of nanofiber-reinforced concrete of maximum crack resistance (fracture toughness) with different fiber concentrations and several types of matrices modified with nanocarbon additives are proposed in the paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call