Abstract

This paper deals with minimum time trajectory optimization along a specified path subject to thermal constraints. We point out here that robots are often integrated into complex robotic cells, and the interactions between the robot and its environment are often difficult or even impossible to model. The structure of the optimization problem allows us to decompose the optimization into two levels, the first being based on models and results of the theory of the calculus of variations, the second being based on measurements and derivative free algorithms. This decomposition allows us to optimize the velocity profiles efficiently without any advance knowledge of the interactions between the robot and its environment. We propose here two numerical algorithms for these two levels of the decomposition which show good convergence properties. The resulting optimal velocity profiles are 5—10% faster than classical profiles, and have been executed successfully on a real Stäubli Rx90 manipulator robot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.