Abstract

We have developed a multicomponent hydrogel scaffold that can mimic the bone extracellular matrix by incorporating collagen, elastin-like polypeptide (ELP), and Bioglass. We examined the effects of Bioglass addition to collagen-ELP scaffolds on mechanical properties, physical characteristics, and in vitro osteogenic differentiation, by varying the Bioglass amount and particle size. Response surface methodology with a central composite design predicted 5 mg (6.6 mg/mL) Bioglass with a particle size of 142 ± 5 µm as the optimal amount and particle size to be mixed with 6 mg/mL collagen and 18 mg/mL ELP to obtain a combination of maximized compressive properties. Swelling ratio and FTIR spectroscopy indicated lower hydrophilicity and the presence of hydrophobic and secondary interactions between collagen, ELP, and Bioglass. Scanning electron microscopy showed a nanofibrous morphology of intermingled collagen-ELP-Bioglass network. In vitro osteogenic characterization using human adipose-derived stem cells revealed increased cell attachment and proliferation with increased ALP activity, osteocalcin content, and mineralized deposit formation during a three-week culture. Numerous mineralized deposits composed of calcium and phosphorous were shown by energy dispersive spectroscopy. Overall, our results show that the collagen-ELP-Bioglass multicomponent composites have enhanced mechanical properties with adequate physical features and cell culture properties for bone tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.