Abstract

Collagenases are the most important group of commercially-produced enzymes. However, even though biological resources are abundant in the sea, very few of these commercially popular enzymes are from marine sources, especially from marine bacteria. We optimized the production of marine collagenases by Pseudoalteromonas sp. SJN2 and investigated the antioxidant activities of the hydrolysates. Media components and culture conditions associated with marine collagenase production by Pseudoalteromonas sp. SJN2 were optimized by statistical methods, namely Plackett–Burman design and response surface methodology (RSM). Furthermore, the marine collagenases produced by Pseudoalteromonas sp. SJN2 were seen to efficiently hydrolyze marine collagens extracted from fish by-products, and remarkable antioxidant capacities of the enzymatic hydrolysates were shown by DPPH radical scavenging and oxygen radical absorbance capacity (ORAC) tests. The final optimized fermentation conditions were as follows: soybean powder, 34.23 g·L−1; culture time, 3.72 d; and temperature, 17.32 °C. Under the optimal fermentation conditions, the experimental collagenase yield obtained was 322.58 ± 9.61 U·mL−1, which was in agreement with the predicted yield of 306.68 U·mL−1. Collagen from Spanish mackerel bone, seabream scale and octopus flesh also showed higher DPPH radical scavenging rates and ORAC values after hydrolysis by the collagenase. This study may have implications for the development and use of marine collagenases. Moreover, seafood waste containing beneficial collagen could be used to produce antioxidant peptides by proteolysis.

Highlights

  • Collagen is the main component of the extracellular matrix

  • Collagenases SJN2 was sequentially purified using ammonium sulfate precipitation, anion exchange and size exclusion chromatography; Col SJN2 purification is shown in Figure S1 and Compared with other strains isolated from the inshore environment of the South China Sea at the same time, Pseudoalteromonas sp

  • Given the increasing economic relevance of marine collagenases, this study was conducted to optimize a variety of fermentation parameters, including medium composition and culture conditions, for maximal collagenase production

Read more

Summary

Introduction

Collagen is the main component of the extracellular matrix. Collagen is the predominant constituent of skin, tendons and cartilage and is the main organic component of bones, teeth and corneas [1,2]. Collagen is a structural protein with high tensile strength, and a protein that affects cell differentiation, migration and attachment. Collagen is an inexpensive and resourceful meat by-product that is used extensively as a food additive to increase the texture, water-holding capacity and stability of several food products. The main sources of collagen, such as bovine and porcine skin and bone, are derived from land-based animals. Components of marine organisms, Mar. Drugs 2017, 15, 377; doi:10.3390/md15120377 www.mdpi.com/journal/marinedrugs

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call