Abstract

We have developed a multicomponent hydrogel scaffold that can mimic the bone extracellular matrix by incorporating collagen, elastin-like polypeptide (ELP), and Bioglass. We examined the effects of Bioglass addition to collagen-ELP scaffolds on mechanical properties, physical characteristics, and in vitro osteogenic differentiation, by varying the Bioglass amount and particle size. Response surface methodology with a central composite design predicted 5 mg (6.6 mg/mL) Bioglass with a particle size of 142 ± 5 µm as the optimal amount and particle size to be mixed with 6 mg/mL collagen and 18 mg/mL ELP to obtain a combination of maximized compressive properties. Swelling ratio and FTIR spectroscopy indicated lower hydrophilicity and the presence of hydrophobic and secondary interactions between collagen, ELP, and Bioglass. Scanning electron microscopy showed a nanofibrous morphology of intermingled collagen-ELP-Bioglass network. In vitro osteogenic characterization using human adipose-derived stem cells revealed increased cell attachment and proliferation with increased ALP activity, osteocalcin content, and mineralized deposit formation during a three-week culture. Numerous mineralized deposits composed of calcium and phosphorous were shown by energy dispersive spectroscopy. Overall, our results show that the collagen-ELP-Bioglass multicomponent composites have enhanced mechanical properties with adequate physical features and cell culture properties for bone tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call