Abstract

Spraying technical parameters are important factors that affect spraying efficiency. Most studies on spraying technical parameters use single-factor methods to study the speed of spray particles, and few scholars have studied the joint influence of multiple factors. This article uses gas temperature, particle size, and gas pressure as independent variables, and the independent variables interact. The design-expert method was used to establish a linear regression equation model of the velocity of sprayed Al and Cu particles at the Laval exit and the velocity before deposition with the substrate, and the response surface analysis method was used to predict the optimal spraying parameters of Al and Cu particles. The study found the contribution rate of three factors to particle velocity: the prediction of particle velocity at the exit of the Laval nozzle and before deposition with the substrate was realized; the error between the predicted value of particle velocity and the actual value obtained by simulation is less than 1.6 %, indicating that the speed linear regression equation established is effective and reliable in predicting the simulation results; the optimal spraying parameters and particle speeds of Al and Cu particles were obtained through response surface analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.