Abstract

An integrated model of compressible thermofluid, splat formation and coating formation for a cold dynamic spray process has been established. In-flight behavior of nano-micro particles and the interaction between the shock wave and the particles in a supersonic jet flow impinging onto the substrate and further particle acceleration with electrostatic force are clarified in detail by considering viscous drag force, flow acceleration, added mass, gravity, Basset history force, Saffman lift force, Brownian motion, thermophoresis and electrostatic force. The effect of electrostatic acceleration becomes more significant with the decrease in particle diameter even in the presence of unavoidable shock wave. As a result, electrostatic acceleration can broaden the application range of operating particle diameter in a cold gas dynamic spray process to form a robust and activated coating. Finally, based on the integrated model, the coating thickness characteristics in an electrostatic assisted cold dynamic spray process are evaluated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.