Abstract
Rubber concrete has been applied to a certain extent in fatigue-resistant structures due to its good durability. Based on a cohesive model of rubber composed of a five-phase material containing mortar, aggregate, rubber, aggregate-mortar interfacial transition zone (ITZ), and rubber-mortar ITZ, this paper studies the influence of the cohesive parameters in the rubber-mortar ITZ on the fatigue problem of rubber concrete on the mesoscopic scale. As the weak part of cement-based composite materials, the ITZ has a great influence on the mechanical properties and durability of concrete, but the performance of the ITZ is difficult to test in macro experiments, resulting in difficulties in determining its simulation parameters. Based on the cohesive model with a rubber content of 5%, this study uses Monofactor analysis and the Plackett-Burman test to quickly and effectively determine the primary and secondary influences of the cohesive model parameters in the rubber-mortar ITZ; further, the response surface method is used to optimize the cohesive parameters in the rubber-mortar ITZ, and the numerical simulation results after optimizing the cohesive parameters are compared and analyzed with the simulation results before optimization. The results show that, under the setting of the optimized parameters, the simulation results of each item of the optimal cohesive model parameters in the rubber-mortar ITZ are in line with the reality and closer to the experimental data, and they are also applicable to rubber concrete models with different rubber dosing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.