Abstract

Magnetic nanoparticles (MNPs) are considered a theranostic agent in MR imaging, playing an effective role in inducing magnetic hyperthermia. Since, high-performance magnetic theranostic agents are characterized by superparamagnetic behavior and high anisotropy, in this study, cobalt ferrite MNPs were optimized and investigated as a theranostic agent. CoFe2O4@Au@dextran particles were synthesized and characterized by DLS, HRTEM, SEM, XRD, FTIR, and VSM methods. After cytotoxicity evaluation, MR imaging parameters (r1, r2 and r2 / r1) were calculated for these nanostructures. Afterward, magnetic hyperthermia at the frequency of 425kHz was applied to calculate specific loss power (SLP). Formation of CoFe2O4@Au@dextran was confirmed by UV-Visible spectrophotometry. On the basis of the relaxometric and hyperthermia induction findings of nanostructures in all stages of synthesis, the CoFe2O4@Au@dextran could produce the highest parameters of r2 and r2/r1 and SLP with values ​​of 389.7, 51.2mM-1s-1, and 2449 W/g, respectively. The formation of multi-core MNPs by dextran coating is expected to improve the magnetic properties of the nanostructure, leading to optimization of theranostic parameters, so that CoFe2O4@Au@dextran NPs can create contrast-enhanced images more than three times the clinical use and require less contrast agent, reducing side effects. Accordingly, CoFe2O4@Au@dextrancan be introduced as a suitable theranostic nanostructurewith optimal efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.