Abstract

Sodium carbonate (Na2CO3) supported by gamma-alumina (g-Al2O3) is one of the best sorbents for CO2 capture in economic terms because of its low raw material cost and excellent performance in low-temperature operation. The fundamental goal of this study is to optimize the operating conditions of CO2 adsorption by Na2CO3/Al2O3 sorbent in a fixed bed reactor. The sorbent characterization was studied using BET, SEM, XRF, and XRD analyses, and the sorbent structure was compared before and after the carbonation reaction. Moreover, the effects of side reactions on the adsorption process were investigated. The Response Surface Methodology (RSM) was used with Box-Behnken Design (BBD) to design the experiments. The optimum conditions are introduced at the point where initial CO2 capture capacity and deactivation rate constants are as high and as low as possible, respectively. The optimum values of the variables corresponding to the temperature of 50°C, vapor pretreatment time of 9 min, and H2O/CO2 mole ratio of 1. The amounts of initial CO2 capture capacity and deactivation rate constant in the optimum conditions were obtained to be 39.238 mgCO2/gsorbent and 0.416 min-1, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.