Abstract

Layered double hydroxides (LDH) are great adsorbents for anionic pollutants, but are in a powder form that leads to challenges in solid-liquid separation, low hydraulic conductivity, and handling. Herein, novel bionanocomposite films containing chitosan (Cs), tannic acid (TA), and LDH were fabricated and applied for the removal of reactive blue 4 (RB4). A response surface methodology with Box–Behnken design was applied to study the effect of operating parameters (TA%: 0–20, LDH%: 0–20, pH: 5–9, adsorbent dosage: 0.5–1.5 g L−1, time: 30–90 min) on RB4 dye removal (DR%). A quadratic regression equation was successfully developed to predict the response (R2: 0.95). The obtained optimized condition was TA%: 10, LDH%: 20, pH: 5, adsorbent dosage: 1.5 g L−1, and time: 71 min that resulted in DR%: 98.2. The best-fitted adsorption isotherm and kinetic models were linear Langmuir and nonlinear pseudo-second-order models, respectively. The maximum capacity of adsorption for the optimized film was 406 mg g−1. The obtained thermodynamic parameters implied that the process of adsorption was exothermic and spontaneous. The reusability studies showed that the DR% was decreased from 93% for the first cycle to 69%, 57%, and 56% for the second, third and fourth cycle, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.