Abstract

IntroductionThis study investigated the impact of high matrix image reconstruction in combination with different reconstruction kernels and levels of iterative reconstructions on image quality in chest CT. MethodsAn anthropomorphic chest phantom (Kyoto Kagaku Co., Ltd., Kyoto, Japan), and a Catphan® 600 (The Phantom Laboratory, Greenwich, NY, USA) phantom were scanned using a dual source scanner. Standard institutional protocol with 512 × 512 matrix was used as a reference. Reconstructions were performed for 768 × 768 and 1024 × 1024 matrices and all possible combinations of three different kernels and five levels of iterative reconstructions were included. Signal difference to noise ratio (SdNR) and line pairs per cm (lp/cm) were manually measured. A Linear regression model was applied for objective image analysis (SdNR) and inter–and intra-reader agreement was given as Cohen's kappa for the visual image assessment. ResultsMatrix size did not have a significant impact on SdNR (p = 0.595). Kernel (p = 0.014) and ADMIRE level (p = 0.001) had a statistically significant impact on SdNR. The spatial resolution ranged from 7 lp/cm to 9 lp/cm. The highest spatial resolution was achieved using kernel Br64 and ADMIRE 1, 2 and 3 in both 768- and 1024-matrices, and with Br59 with ADMIRE 2 and 4 and 768-matrix, all visualizing 9 lp/cm. Both readers scored kernel Br59 highest, and the scoring increased with increasing levels of Iterative Reconstruction. ConclusionMatrix size did not influence image quality, however, the choice of kernel and degree of IR had an impact on objective and visual image quality in 768 - and 1024-matrices, suggesting that increased degree of IR may improve diagnostic image quality in chest CT. Implications for practiceImage quality in CT of the lung may be improved by increasing the level of IR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call