Abstract

It is quite difficult for materials to develop the quantitative model of chemical elements and mechanical properties, because the relationship between them presents the multivariable and non-linear. In this work, the combined approach of artificial neural network (ANN) and genetic algorithm (GA) was employed to synthesize the optimum chemical composition for satisfying mechanical properties for TC11 titanium alloy based on the large amount of experimental data. The chemical elements (Al, Mo, Zr, Si, Fe, C, O, N and H) were chosen as input parameters of the ANN model, and the output parameters are mechanical properties, including ultimate tensile strength, yield strength, elongation and reduction of area. The fitness function for GA was obtained from trained ANN model. It is found that the percentage errors between experimental and predicted are all within 5%, which suggested that the ANN model has excellent generalization capability. The results strongly indicated that the proposed optimization model offers an optimal chemical composition for TC11 titanium alloy, which implies it is a novel and effective approach for optimizing materials chemical composition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.