Abstract

The new phase Mg7Pt4Ge4 (≡Mg8□1Pt4Ge4; □ = vacancy) was prepared by reacting a mixture of the corresponding elements at high temperatures. According to single crystal X-ray diffraction data, it adopts a defect variant of the lighter analogue Mg2PtSi (≡Mg8Pt4Si4), reported in the Li2CuAs structure. An ordering of the Mg vacancies results in a stoichiometric phase, Mg7Pt4Ge4. However, the high content of Mg vacancies results in a violation of the 18-valence electron rule, which appears to hold for Mg2PtSi. First principle density functional theory calculations on a hypothetical, vacancy-free "Mg2PtGe" reveal potential electronic instabilities at EF in the band structure and significant occupancy of states with an antibonding character resulting from unfavorable Pt-Ge interactions. These antibonding interactions can be eliminated through introduction of Mg defects, which reduce the valence electron count, leaving the antibonding states empty. Mg itself does not participate in these interactions. Instead, the Mg contribution to the overall bonding comes from electron back-donation from the (Pt, Ge) anionic network to Mg cations. These findings may help to understand how the interplay of structural and electronic factors leads to the "hydrogen pump effect" observed in the closely related Mg3Pt, for which the electronic band structure shows a significant amount of unoccupied bonding states, indicating an electron deficient system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.