Abstract
Perovskite/organic tandem solar cells (POTSCs) have garnered significant attention due to their potential for achieving high photovoltaic (PV) performance. However, the reported power conversion efficiencies (PCEs) and fill factors (FFs) are still subpar due to the challenges associated with charge extraction in the organic bulk-heterojunction (BHJ) and significant energy losses in the interconnecting layers (ICLs). Here, a quaternary organic BHJ blend is developed to enhance the charge extraction in the organic subcell, contributing to an increased FF of ≥78% under 1 sun illumination and even more under lower illumination intensities. Meanwhile, energy losses in the ICLs are reduced via the incorporation of a self-assembly monolayer (SAM), (4-(3,6-Dimethyl-9H-carbazol-9-yl)butyl)phosphonic acid (Me-4PACz), in organic BHJ to form a MoOx/SAM interface and the thorough control of the MoOx thickness to suppress parasitic absorption. The resultant POTSCs achieve a remarkable PCE of 25.56% (certified: 24.65%), with a record FF of 83.62%, which is among the highest PCEs of POTSCs and the highest FF of all types of perovskite-based tandem solar cells (TSCs) till now. This work proves the optimization of charge extraction and ICLs are effective strategies to promote the performance of POTSCs to surpass other solution-processed perovskite-based TSCs in the near future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.