Abstract

A halophilic cellulase-producing bacterium was isolated from a sediment sample collected from Lake Qarun (Fayoum Province, Egypt). Molecular identification based on 16S rDNA amplification and sequencing revealed 99% homology with Halobacillus sp. and hence was designated as Halobacillus sp. QLS 31. Medium composition and culture conditions were optimized for enhancing the production of cellulase enzyme using the Plackett-Burman statistical design. Ten variables were evaluated for their influence on cellulase production. Carboxymethyl cellulose (CMC), zinc sulfate (ZnSO4), and inoculum size were found to exert a significant effect on cellulase productivity by Halobacillus sp. QLS 31. The maximum specific activity of cellulase enzyme was 48.08U/mg. Following the predicted conditions, a 7.5-fold increase in cellulase specific activity (175.47U/mg) was achieved compared to the basal medium (23.19U/mg) under the following optimized conditions: temperature (30°C), fermentation time (2days ), pH value (9), CMC concentration (1%), inoculum size (1%), yeast extract concentration (0.1%), ammonium sulfate ((NH3)2SO4) concentration (0.1%), sodium chloride (NaCl) concentration (20%), and metal inducers: ZnSO4 (0.1%) and Ca/Mg ratio (0.01%). Thus, the results of this study provide an important basis for more efficient, cheap industrial cellulase production from halophilic Halobacillus sp. QLS 31.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call