Abstract

This study aims to increase the coupling coefficient of the coils and power transfer efficiency (PTE) of the wireless power transfer (WPT) system. WPT system has a severe issue with the PTE as the transfer distance between the transmitter and receiver increases. Therefore, the transmitter and receiver of the single-circular coil (CC-coil) need to be optimized in geometry to maintain high coupling at an optimum distance. Ferrite and aluminum shielding are also crucial on CC-coil optimization. Implementing the series-series (S-S) magnetic resonance compensation technique can increase the PTE of the WPT system. Therefore, the CC-coil is optimized using Ansys Electronics Desktop and co-simulated with the magnetic resonance circuit using Ansys Twin Builder. The results show that the CC-coils' coupling coefficient increased by 21.38% with the shielding implementation. The maximum optimum transfer distance of 37 mm for horizontal misalignment and 30 mm for vertical misalignment. Implementing the S-S magnetic resonance compensation technique can improve the PTE and output power of the WPT system. The power transmitted also varied with the transfer distance, which caused the system's variation of input impedance. Hence, it is essential to consider the coil design and compensation circuit to achieve high PTE and output power at a higher transfer distance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call