Abstract

The strain of muscle fibers in the heart is likely to be distributed uniformly over the cardiac walls during the ejection period of the cardiac cycle. Mathematical models of left ventricular (LV) wall mechanics have shown that the distribution of fiber strain during ejection is sensitive to the orientation of muscle fibers in the wall. In the present study, we tested the hypothesis that fiber orientation in the LV wall is such that fiber strain during ejection is as homogeneous as possible. A finite-element model of LV wall mechanics was set up to compute the distribution of fiber strain at the beginning (BE) and end (EE) of the ejection period of the cardiac cycle, with respect to a middiastolic reference state. The distribution of fiber orientation over the LV wall, quantified by three parameters, was systematically varied to minimize regional differences in fiber shortening during ejection and in the average of fiber strain at BE and EE. A well-defined optimum in the distribution of fiber orientation was found which was not significantly different from anatomical measurements. After optimization, the average of fiber strain at BE and EE was 0.025 +/-0.011 (mean+/-standard deviation) and the difference in fiber strain during ejection was 0.214+/-0.018. The results indicate that the LV structure is designed for maximum homogeneity of fiber strain during ejection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call