Abstract
Based on two previously discovered carbazole carboxamide retinoic acid receptor-related orphan receptor-γt (RORγt) agonists 6 and 7 (t1/2=8.7min and 16.4min in mouse liver microsome, respectively), new carbazole carboxamides were designed and synthesized according to the molecular mechanism of action (MOA) and metabolic site analysis with the aim of identifying novel RORγt agonists with optimal pharmacological and metabolic profiles. By modifying the "agonist lock" touching substitutions on carbazole ring, introducing heteroatoms into different parts of the molecule and attaching a side chain to the sulfonyl benzyl moiety, several potent RORγt agonists were identified with greatly improved metabolic stability. Best overall properties were achieved in compound (R)-10f with high agonistic activities in RORγt dual FRET (EC50=15.6nM) and Gal4 reporter gene (EC50=141nM) assays and greatly improved metabolic stability (t1/2>145min) in mouse liver microsome. Besides, the binding modes of (R)-10f and (S)-10f in RORγt ligand binding domain (LBD) were also studied. Altogether, the optimization of carbazole carboxamides led to the discovery of (R)-10f as a potential small molecule therapeutics for cancer immunotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.