Abstract
When machining aerospace monolithic components, most of materials could be removed, resulting in severe deformation of the parts due to the release and redistribution of the blank’s original residual stress, together with the action of cutting loads and clamping force. A finite element model (FEM) is built for predicting the deformation caused by those factors mentioned above. In this model, some key techniques such as material properties, initial residual stress model, and application of dynamic cutting loads and transformation of boundary condition are discussed in details. The proposed model predicts the machining deformation for multi-frame monolithic components. Particular attention is paid to the influence of the bulkhead processing sequence on part deformation. At last the paper puts forwards optimal bulkhead processing sequence based on minimizing the machining deformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.