Abstract

We optimize InAs y P 1− y buffer layers and compositional grades for lattice-mismatched heteroepitaxy of Ga x In 1− x As/InAs y P 1− y double-heterostructures on InP. The strains of the active and buffer layers depend on the bulk misfit difference between these layers. The misfit difference is adjusted to eliminate strain in the active layer, thus avoiding misfit dislocations and surface topography that would otherwise form to relieve strain. The optimized structure uses an “overshoot” with respect to the conventional design in the misfit and As composition of the InAs y P 1− y buffer. Nearly optimized heterostructures typically show excellent structural quality and extended minority-carrier lifetimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.