Abstract

Rapid industrialization, urbanization and increase in population have led to increasing the pollution levels. Heavy metal pollution of water is of major concern now-a-days as water is the basic need for mankind. The present investigation is removal of lead from aqueous solutions using a new biosorbent Casuarina leaf powder. The cumulative effects of operating parameters such as initial metal ion concentration, pH of the aqueous solution, biosorbent dosage and temperature on the lead biosorption were analyzed using Response Surface Methodology (RSM). For obtaining the mutual interaction between the variables and optimizing these variables, a 24 full factorial central composite design was employed. According to ANOVA results, the proposed quadratic model for CCD fitted very well to the experimental data. The optimal set of conditions for maximum percentage biosorption of lead is found to be pH=4.988, biosorption dosage (w) =35.37 g/L, initial lead concentration (Co)=18.0555 mg/L and temperature=306.47 K and the % of biosorption calculated at these values found to be 95.73%. The Langmuir isotherm fitted well with a correlation factor of 0.9944, followed by Freundlich and Temkin. The entire biosorption process followed pseudo second order kinetics. By applying the Van’t Hoff equation the thermodynamic parameters such as enthalpy (ΔH°), entropy (ΔS°) and free energy (ΔG°) were evaluated which described the biosorption process as spontaneous, irreversible and endothermic in nature. The optimized values obtained through central composite design and one factor at a time process is in good agreement.

Highlights

  • Water is no alien to all the living beings upon earth

  • Duration of equilibrium biosorption is defined as the time required for heavy metal concentration to reach a constant value during biosorption

  • For 63 μm size of 10 g/L biosorbent dosage mixed in 50 mL of aqueous solution (Co=20 mg/L), 50.4% of lead is biosorbed in the first one minute and reached to 55.7% after 5 minutes of biosorption

Read more

Summary

Introduction

Water is no alien to all the living beings upon earth. The influence of pollution on the global environment, through activities such as rapid industrialization, urbanization and mining operations often lead to an increase in the discharge of toxic metals, such as lead, nickel, chromium, cobalt, copper, cadmium etc., into the environment, which results in a contamination of water. These heavy metal contaminants are hazardous to the environment, because they do not naturally degrade [2]. Environmental engineers and scientists are faced with the challenging task to develop appropriate low cost technologies for effluent treatment [4]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.