Abstract

In the era of global energy crises and the pressing concern of fossil fuel depletion, the quest for sustainable alternatives has become paramount. The current study aims to optimize biodiesel extraction from a combination of waste cooking oil (WCO) and sesame seed oil (SSO) through response surface methodology (RSM) and artificial neural network (ANN). The cold flow properties of biodiesel produced from WCO are a major obstacle to the commercial use of biodiesel. On the other hand, SSO possesses better oxidation stability and cold flow properties. A mixture of waste cooking oil (i.e. 70 % by volume) and sesame seed oil (i.e. 30 % by volume) has been prepared for biodiesel production via a microwave-assisted transesterification process. For biodiesel yield optimization, the interaction among the operating parameters is developed by RSM, whereas biodiesel yield is predicted by ANN. The operating parameters include reaction speed, RPM (100–600 rpm), reaction time (1–5 min), methanol to oil ratio (8:1–12:1 v/v), and catalyst concentration (0.1–2 % w/w). The highest biodiesel yield of 94 % is found at a reaction speed of 350 rpm, reaction time of 3 min, catalyst concentration of 1.05 w/w, and methanol to oil ratio of 10:1. Furthermore, it is discovered that when estimating biodiesel production rate depending on reaction constraints, ANN shows lower comparative error compared to RSM. The results show that ANN outperforms RSM in terms of percentage improvement when it comes to biodiesel production prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.