Abstract

This letter presents a new algorithm, fast evolutionary programming (FEP), for determining the model orders and parameters of reduced parameter bilinear (RPBL) models used for predicting nonlinear and chaotic time series. FEP is a variant of the conventional evolutionary programming (EP) algorithm with a new mutation operator. This new mutation operator enhances EP's ability to escape from local minima resulting in a significantly faster convergence to the optimal solution. Both the model order and the parameters are evolved simultaneously. Experimental results on the sunspot series and Mackey-Glass series show that FEP is capable of determining the optimal model order and, in comparison with conventional evolutionary programming, evolves models with lower normalized mean squared error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.