Abstract

In the laser forming (LF) process, laser induced temperature distribution within the work-piece is of paramount importance. Through control of process parameters and depending on work-piece geometry, the temperature distribution can be altered to achieve either localized plastic compressive strains or elastic-plastic buckling. Conventionally, three process parameters are manipulated in order to control the temperature distribution within the work-piece; traverse speed, average power and spot size. Additionally, the intensity distribution and geometrical shape of the beam incident on the work-piece surface can be manipulated. The latter has the potential to be useful in maintaining bend angle per pass whilst working within strict metallurgical constraints. In this paper, the effect of beam intensity distribution and geometrical shape on the LF of automotive grade high strength DP 1000 steel sheet is investigated numerically and experimentally, with particular emphasis on optimization for minimal micro-structural transformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.