Abstract

Two general models for batch simultaneous enzymatic and microbial reaction (SEMR) processes are presented, the second derived from and simpler than the first and accounting for enzyme denaturation. Using the second model and parameter values from the literature, simulation was used to examine a range of enzyme addition rate strategies (in which the rate was a linear function of time) for a relatively fast ethanol fermentation and for a longer duration citric acid fermentation, both using cellulose as the substrate. For the ethanol process it is optimal (for a specific objective function which accounts for product value and enzyme cost) to add all the enzyme at the beginning of the process. But for the citric acid process a linearly decreasing enzyme addition rate, coupled with the addition of a small fraction of the enzyme at time zero, is better than pure batch operation or operation with the best constant enzyme feed rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call