Abstract

Marine algae are promising alternative sources for bioenergy including hydrogen. Their polymeric structure, however, requires a pretreatment such as dilute-acid hydrolysis prior to fermentation. This study aimed to optimize the control variables of batch dilute-acid hydrolysis for dark hydrogen fermentation of algal biomass. The powder of Gelidium amansii was hydrolyzed at temperatures of 120–180 °C, solid/liquid (S/L) ratios of 5–15% (w/v), and H2SO4 concentrations of 0.5–1.5% (w/w), and then fed to batch hydrogen fermentation. Among the three control variables, hydrolysis temperature was the most significant for hydrogen production as well as for hydrolysis efficiency. The maximum hydrogen production performance of 0.51 L H2/L/hr and 37.0 mL H2/g dry biomass was found at 161–164 °C hydrolysis temperature, 12.7–14.1% S/L ratio, and 0.50% H2SO4. The optimized dilute-acid hydrolysis would enhance the feasibility of the red algal biomass as a suitable substrate for hydrogen fermentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.