Abstract

Nipah virus (NiV) causes near-annual outbreaks of fatal encephalitis and respiratory disease in South Asia with a high mortality rate (∼70%). Since there are no approved therapeutics for NiV disease in humans, the WHO has designated NiV and henipaviral diseases priority pathogens for research and development. We generated a new recombinant green fluorescent reporter NiV of the circulating Bangladesh genotype (rNiV-B-ZsG) and optimized it alongside our previously generated Malaysian genotype reporter counterpart (rNiV-M-ZsG) for antiviral screening in primary-like human respiratory cell types. Validating our platform for rNiV-B-ZsG with a synthetic compound library directed against viral RNA-dependent RNA polymerases, we identified a hit compound and confirmed its sub-micromolar activity against wild-type NiV, green fluorescent reporter, and the newly constructed bioluminescent red fluorescent double reporter (rNiV-B-BREP) NiV. We furthermore demonstrated that rNiV-B-ZsG and rNiV-B-BREP viruses showed pathogenicity comparable to wild-type NiV-B in the Syrian golden hamster model of disease, supporting additional use of these tools for both pathogenesis and advanced pre-clinical studies in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.