Abstract

An implementation of analytic basis set gradients is reported for the optimization of auxiliary basis sets in resolution-of-the-identity second-order Moller–Plesset perturbation theory (RI-MP2) and approximate coupled-cluster singles-and-doubles (RI-CC2) calculations. The analytic basis set gradients are applied in the optimization of auxiliary basis sets for a number of large one-electron orbital basis sets which provide correlation energies close to the basis set limit: the core–valence basis sets cc-pwCVXZ (B–Ne, Al–Ar) with X = D, T, Q, 5, the quintuple-ζ basis sets cc-pV5Z (H–Ar) and cc-pV(5 + d)Z (Al–Ar) and the doubly-polarized valence quadruple-ζ basis sets QZVPP for Li–Kr. The quality of the optimized auxiliary basis sets is evaluated for several test sets with small and medium sized molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call