Abstract

The enhancement of water quality by artificial wetland systems is increasingly being employed throughout the world. Three wetlands were studied in Tucson, AZ to evaluate their individual performance in the removal of indicator bacteria (coliforms), coliphage, and enteric pathogens (Giardia and Cryptosporidium). A duckweed-covered pond, a multi-species subsurface flow (SSF) and a multi-species surface flow (SF) wetland were studied. Removal of the larger microorganisms, Giardia and Cryptosporidium, was the greatest in the duckweed pond at 98 and 89 percent, respectively. The lowest removal occurred in the SF wetland, 73 percent for Giardia and 58 percent removal for Cryptosporidium. In contrast, the greatest removal of coliphage, total and fecal coliforms occurred in the SSF wetland, 95, 99, and 98 percent respectively, whereas the pond had the lowest removals (40, 62, and 61 percent, respectively). Sedimentation may be the primary removal mechanism within the duckweed pond since the removal was related to size, removal of the largest organisms being the greatest. However, the smaller microorganisms were removed more efficiently in the SSF wetland, which may be related to the large surface area available for adsorption and filtration. This study suggests that in order to achieve the highest treatment level of secondary unchlorinated wastewater, a combination of aquatic ponds and subsurface flow wetlands may be necessary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.