Abstract

Artificial ground freezing is an environmentally friendly technique to provide temporary excavation support and groundwater control during tunnel construction under difficult geological and hydrological ground conditions. Evidently, groundwater flow has a considerable influence on the freezing process. Large seepage flow may lead to large freezing times or even may prevent the formation of a closed frozen soil body. For safe and economic design of freezing operations, this paper presents a coupled thermo-hydraulic finite element model for freezing soils integrated within an optimization algorithm using the Ant Colony Optimization (ACO) technique to optimize ground freezing in tunneling by finding the optimal positions of the freeze pipe, considering seepage flow. The simulation model considers solid particles, liquid water and crystal ice as separate phases, and the mixture temperature and liquid pressure as primary field variables. Through two fundamental physical laws and corresponding state equations, the model captures the most relevant couplings between the phase transition associated with latent heat effect, and the liquid transport within the pores. The numerical model is validated by means of laboratory results considering different scenarios for seepage flow. As demonstrated in numerical simulations of ground freezing in tunneling in the presence of seepage flow connected with the ACO optimization algorithm, the optimized arrangement of the freeze pipes may lead to a substantial reduction of the freezing time and of energy costs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call