Abstract

This study is preliminary to an experiment to be performed onboard the International Space Station (ISS) and on Earth to investigate how low gravity influences the healing of sutured human skin and vein wounds. Its objective was to ascertain whether these tissue explants could be maintained to be viable ex vivo for long periods of time, mimicking the experimental conditions onboard the ISS. We developed an automated tissue culture chamber, reproducing and monitoring the physiological tensile forces over time, and a culture medium enriched with serelaxin (60 ng/mL) and (Zn(PipNONO)Cl) (28 ng/mL), known to extend viability of explanted organs for transplantation. The results show that the human skin and vein specimens remained viable for more than 4 weeks, with no substantial signs of damage in their tissues and cells. As a further clue about cell viability, some typical events associated with wound repair were observed in the tissue areas close to the wound, namely remodeling of collagen fibers in the papillary dermis and of elastic fibers in the vein wall, proliferation of keratinocyte stem cells, and expression of the endothelial functional markers eNOS and FGF-2. These findings validate the suitability of this new ex vivo organ culture system for wound healing studies, not only for the scheduled space experiment but also for applications on Earth, such as drug discovery purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call