Abstract
The aim of the present study is to design a solid material with specific and tailored mechanical properties through a suitably defined design framework and to evaluate the effectiveness of different microstructure geometries in an engineering perspective. To these ends, topology optimization algorithms are applied on a 2D homogenized equivalent model of a periodic structure. The design framework, developed in a previous work for 2D lattices made of regular hexagons, is here expanded and validated also in the cases of circular and square unit cells. The proposed approach involves optimizing porosity distribution of a homogenized equivalent solid, obtained through a Bloch–Floquet-based analysis, within a 2D lattice of regular unit cells forming the core element of a sandwich panel. Finite-element analyses on homogenized and fine structural models are carried out in order to validate the procedure, beyond the particular choice of the unit cell geometry and to detect its effectiveness and limits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.