Abstract

Viral pathogens, such as norovirus (NoV), are frequently associated with foodborne gastroenteritis worldwide, and the detection of NoV in food requires appropriate methods and the use of process controls. In this study, an adsorption-elution concentration method using negatively charged membranes was optimized to recover NoV from lettuce, using murine norovirus 1 (MNV-1) as a human NoV (HuNoV) surrogate. Initially, three elution buffers were evaluated by direct elution using a Stomacher® apparatus with a filter bag and different concentrations of MNV-1 genomic copies. The eluates were filtered in a Stericup® and concentrated by a Centriprep Concentrator®, and the viral RNA was quantified by real-time PCR that was preceded by reverse transcription. The MNV-1 recovery efficiency varied based on the buffers used, ranging from 5.2 to 9.8% for PBS pH 7.2, 0.2-18% for glycine NaCl pH 9.5 and 10.8-33.3% for glycine Tris-HCl pH 9.5. Further analysis of the glycine Tris-HCl pH 9.5 buffer revealed that gentle-shaking, direct elution could replace the use of a Stomacher®, with recovery rates reaching 66 and 32% for MNV-1 and HuNoV, respectively, all of which suggested that this procedure is a quick and efficient method for recovering NoV from lettuce.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.