Abstract

The low concentration and high flow rate of air-borne butyl acetate (BA) could be effectively removed using combined adsorption-catalytic oxidation system. Ag–Y (Si/Al = 80) dual-function adsorbent was investigated for the adsorption step of 1000 ppm of butyl acetate at gas hourly space velocity of 13,000 h −1 at ambient temperature under dry and humid feeds. A central composite design (CCD) coupled with response surface methodology (RSM) was employed to obtain the optimum process conditions and the interactions between process variables were demonstrated and elucidated. Humidity and increasing organic concentration shortened the adsorption service time. The effect of moisture was more pronounced at low BA concentration. The interactions between the BA concentration and humidity were statistically significant at 95% confidence level. The optimum conditions were found to be at 4500 ppm of BA with 37 min saturation time to give 58 mg BA/g as adsorption capacity. The simulated data fitted the experimental data satisfactorily. The simulated data also correctly demonstrated the overall behaviors of the adsorption process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.