Abstract
Aphids are piercing-sucking insect pests and feed on phloem sap. During feeding, aphids inject a battery of salivary proteins into host plant. Some of these proteins function like effectors of microbial pathogens and influence the outcome of plant–aphid interactions. The pea aphid (Acyrthosiphon pisum) is the model aphid and encompasses multiple biotypes each specialized to one or a few legume species, providing an opportunity to investigate the underlying mechanisms of the compatibility between plants and aphid biotypes. We aim to identify the aphid factors that determine the compatibility with host plants, hence involved in the host plant specialization process, and hypothesize that salivary proteins are one of those factors. Agrobacterium-mediated transient gene expression is a powerful tool to perform functional analyses of effector (salivary) proteins in plants. However, the tool was not established for the legume species that A. pisum feeds on. Thus, we decided to optimize the method for legume plants to facilitate the functional analyses of A. pisum salivary proteins. We screened a range of cultivars of pea (Pisum sativum) and alfalfa (Medicago sativa). None of the M. sativa cultivars was suitable for agroinfiltration under the tested conditions; however, we established a protocol for efficient transient gene expression in two cultivars of P. sativum, ZP1109 and ZP1130, using A. tumefaciens AGL-1 strain and the pEAQ-HT-DEST1 vector. We confirmed that the genes are expressed from 3 to 10 days post-infiltration and that aphid lines of the pea adapted biotype fed and reproduced on these two cultivars while lines of alfalfa and clover biotypes did not. Thus, the pea biotype recognizes these two cultivars as typical pea plants. By using a combination of ZP1109 and an A. pisum line, we defined an agroinfiltration procedure to examine the effect of in planta expression of selected salivary proteins on A. pisum fitness and demonstrated that transient expression of one candidate salivary gene increased the fecundity of the aphids. This result confirms that the agroinfiltration can be used to perform functional analyses of salivary proteins in P. sativum and consequently to study the molecular mechanisms underlying host specialization in the pea aphid complex.
Highlights
Herbivorous insects present a high level of species diversity and a large majority of them is specialized to feed on certain host plant species
Each cultivar was infiltrated with three Agrobacterium strains [C58C1, GV3101 and AGL-1 (Supplementary Table S2)] each harboring pEAQ-HT-DEST1GUSi to identify the combination of plant and bacterium genotypes that produce high amount of GUS proteins
None of the M. sativa cultivars was suitable for Agrobacterium-mediated transient expression in leaves as no GUS staining could be observed in these plants under the tested conditions
Summary
Herbivorous insects present a high level of species diversity and a large majority of them is specialized to feed on certain host plant species. All the A. pisum biotypes studied so far feed well on Vicia faba, which is considered as a universal host plant for pea aphids (Ferrari et al, 2008; Peccoud et al, 2009). Many of these A. pisum biotypes can be crossed with other biotypes (Peccoud et al, 2014), and QTL analyses have been used to identify aphid factors that determine the compatibility with the host plants (Hawthorne and Via, 2001; Via et al, 2012; Kanvil et al, 2015)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.