Abstract
Aerosol jet printing requires control of a number of process parameters, including the flow rate of the carrier gas that transports the aerosol mist to the substrate, the flow rate of the sheath gas that collimates the aerosol into a narrow beam, and the speed of the stage that transports the substrate beneath the beam. In this paper, the influence of process parameters on the geometry of aerosol-jet-printed silver lines is studied with the aim of creating high-resolution conductive lines of high current carrying capacity. A systematic study of process conditions revealed a key parameter: the ratio of the sheath gas flow rate to the carrier gas flow rate, defined here as the focusing ratio. Line width decreases with increasing the focusing ratio and stage speed. Simultaneously, the thickness increases with increasing the focusing ratio but decreases with increasing stage speed. Geometry control also influences the resistance per unit length and single pass printing of low-resistance silver lines is demonstrated. The results are used to develop an operability window and locate the regime for printing tall and narrow silver lines in a single pass. Under optimum conditions, lines as narrow as 20 μm with aspect ratios (thickness/width) greater than 0.1 are obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.