Abstract

The waste tire was used as a precursor to prepare activated carbon, and the effect of different processing conditions on the prepared activated carbon was studied. Response surface methodology coupled with Box–Behnken Design (BBD) has been used to find the optimal experimental parameters for the preparation of activated carbon. Response surface methodology was implemented to evaluate the effects of activation temperature, activation time and impregnation ratio. BBD was used to determine the model for the different levels of activation temperature (400–600 °C), activation time (60–180 min) and potassium hydroxide-to-tire ratio (0.5–1.5). The obtained activated carbon was evaluated based on its ability to remove methylene blue dye from aqueous solution. The influential parameters that affected the quality of the prepared activated carbon were determined by analysis of variance based upon the response variable. The optimum condition obtained for the activated carbon preparation was at an activation temperature of 400 °C, the reaction time of 165 min and potassium hydroxide-to-tire ratio of 1.5. The regression equation obtained was validated which showed a good agreement with the predicted model with a maximum error of 1.5% and R2 value of 0.975.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call