Abstract

To efficiently deliver genes and short hairpin RNAs to the hypothalamus we aimed to optimize the transduction efficiency of adeno-associated virus (AAV) in the rat hypothalamus. We compared the transduction efficiencies of AAV2 vectors pseudotyped with AAV1, AAV8, and mosaic AAV1/2 and AAV2/8 coats with that of an AAV2 coated vector after injection into the lateral hypothalamus of rats. In addition, we determined the transduction areas and the percentage of neurons infected after injection of various titers and volumes of two AAV1-pseudotyped vectors in the paraventricular hypothalamus (PVN). Successful gene delivery to the hypothalamus was achieved with AAV1-pseudotyped AAV vectors. The optimal approach to transduce an area, with the size of the PVN, was to inject 1 x 10(9) genomic copies of an AAV1-pseudotyped vector in a volume of 1 microl. At a radius of 0.05 mm from the injection site almost all neurons were transduced. In addition, overexpression of AgRP with the optimal approach resulted in an increase in food intake and body weight when compared with AAV-GFP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.