Abstract

This study’s aim is to apply response surface methodology (RSM) to model and optimize the accelerated solvent extraction (ASE) technique for extracting the sum of ginsenosides (Rg1, Rb1, and Rg3) and total ginsenosides from cultivated wild ginseng. To extract ginsenosides from cultivated wild ginseng, a new ASE-based method, combined with RSM modeling and optimization, was developed. The RSM method, which was based on a five-level, three-factor central composite design, was used to obtain the optimal combination of extraction conditions. Briefly, the optimal extraction conditions for the sum of ginsenosides (Rg1, Rb1, and Rg3) and total ginsenoside were as follows: 88.64% ethanol for each extraction solvent, 105.98°C and 129.66°C of extraction temperature, 28.77 and 15.92 min of extraction time, extraction pressure of 1,500 psi, nitrogen purge of 60 s, flush volume of 60%, and one extraction cycle. A 3D response surface plot and contour plot derived from the mathematical models were applied to obtain the optimal conditions. Under the above conditions, the experimental extraction yields of the sum of ginsenosides (Rg1, Rb1, and Rg3) and total ginsenoside content were 7.45 and 32.82 mg/g, respectively, which closely agrees with the model’s prediction values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call