Abstract

The overall performance of a supply-chain (SC) is influenced significantly by the decisions taken in its production-distribution (P-D) plan. A P-D plan integrates decisions in production, transport and warehousing as well as inventory management. One key issue in the performance evaluation of a Supply Network (SN) is the modeling and optimization of P-D planning problem considering its actual complexity. Based on the integration of Aggregate Production Planning and Distribution Planning, this paper firstly develops a mixed integer formulation for a two-echelon supply network considering the real-world variables and constraints. A multi-objective genetic algorithm (MOGA) is then designed for the optimization of the developed mathematical model. Finally, a real-world case study incorporating multiple products, multiple plants, multiple warehouses, multiple end-users, and multiple time periods will be considered for investigating the performance evaluation of the MOGA method against the traditional approaches of SC planning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call