Abstract
MR Imaging the spinal cord of non-human primates (NHP), such as squirrel monkey, is important since the injuries in NHP resemble those that afflict human spinal cords. Our previous studies have reported a multi-parametric MRI protocol, including functional MRI, diffusion tensor imaging, quantitative magnetization transfer and chemical exchange saturation transfer, which allows non-invasive detection and monitoring of injury-associated structural, functional and molecular changes over time. High signal-to-noise ratio (SNR) is critical for obtaining high-resolution images and robust estimates of MRI parameters. In this work, we describe our construction and use of a single channel coil designed to maximize the SNR for imaging the squirrel monkey cervical spinal cord in a 21 cm bore magnet at 9.4 T. We first numerically optimized the coil dimension of a single loop coil and then evaluated the benefits of a quadrature design. We then built an optimized coil based on the simulation results and compared its SNR performance with a non-optimized single coil in both phantoms and in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.